参考文献

Angrist J D. Pischke J S. 2009. Mostly Harmless Econometrics: An Empiricist’s Companion[M]. Princeton, New Jersey Oxford: Princeton University Press.
Ashenfelter O. Card D. 1985. Using the Longitudinal Structure of Earnings to Estimate the Effect of Training Programs[J/OL]. The Review of Economics and Statistics, 67(4): 648. https://www.jstor.org/stable/1924810.
Aylmer Fisher R. 1926. The Arrangement of Field Experiments[J/OL]. Journal of the Ministry of Agriculture of Great Britain, 33: 503-513. https://doi.org/10.23637/ROTHAMSTED.8V61Q.
Blackwell M. Iacus S. King G. 等. 2009. Cem: Coarsened Exact Matching in Stata[J/OL]. The Stata Journal: Promoting Communications on Statistics and Stata, 9(4): 524-546[2025-05-31]. https://doi.org/10.1177/1536867X0900900402.
Böckerman P. Ilmakunnas P. 2009. Unemployment and Self-assessed Health: Evidence from Panel Data[J/OL]. Health Economics, 18(2): 161-179[2025-04-12]. https://doi.org/10.1002/hec.1361.
Callaway B. Sant’Anna P H C. 2021. Difference-in-Differences with Multiple Time Periods[J/OL]. Journal of Econometrics, 225(2): 200-230[2021-12-07]. https://doi.org/10.1016/j.jeconom.2020.12.001.
Calonico S. Cattaneo M D. Farrell M H. 等. 2022. rdrobust: Robust Data-Driven Statistical Inference in Regression-Discontinuity Designs[M/OL]. https://CRAN.R-project.org/package=rdrobust.
Cochran A W G. 1968. The Effectiveness of Adjustment by Subclassification in Removing Bias in Observational Studies Published by : International Biometric Society Linked references are available on JSTOR for this article : THE EFFECTIVENESS OF ADJUSTMVIENT BY[J].
Cox D R. 2009. Randomization in the Design of Experiments[J]. International Statistical Review, 77(3): 415-429.
Cunningham S. 2021. Causal Inference: The Mixtape[M]. New Haven ; London: Yale University Press.
D. Cattaneo M. Idroboy N. Titiunik R. 2017. A Practical Introduction to Regression Discontinuity Designs: Volume I[M]. collingwoodresearch.com.
Dasu T. Johnson T. 2003. Exploratory Data Mining and Data Cleaning[M]. John Wiley & Sons, Inc.
Daw J R. Hatfield L A. 2018. Matching and Regression to the Mean in Difference-in-Differences Analysis[J/OL]. Health Services Research, 53(6): 4138-4156[2025-04-12]. https://doi.org/10.1111/1475-6773.12993.
Dimick J B. Ryan A M. 2014. Methods for Evaluating Changes in Health Care Policy: The Difference-in-Differences Approach[J/OL]. JAMA, 312(22): 2401[2025-04-12]. https://doi.org/10.1001/jama.2014.16153.
Fleiss J L. Levin B A. Paik M C. 2003. Chapter 5: How to Randomize in Statistical Methods for Rates and Proportions.[M]. Hoboken, N.J.: Wiley-Interscience.
Goodman-Bacon A. 2021. Difference-in-Differences with Variation in Treatment Timing[J/OL]. Journal of Econometrics, 225(2): 254-277[2025-04-15]. https://doi.org/10.1016/j.jeconom.2021.03.014.
Iacus S M. King G. Porro G. 2009. Cem : Software for Coarsened Exact Matching[J/OL]. Journal of Statistical Software, 30(9)[2025-05-31]. https://doi.org/10.18637/jss.v030.i09.
Iacus S M. King G. Porro G. 2011. Multivariate Matching Methods That Are Monotonic Imbalance Bounding[J/OL]. Journal of the American Statistical Association, 106(493): 345-361[2025-05-31]. https://doi.org/10.1198/jasa.2011.tm09599.
Iacus S M. King G. Porro G. 2012. Causal Inference without Balance Checking: Coarsened Exact Matching[J/OL]. Political Analysis, 20(1): 1-24[2025-05-31]. https://doi.org/10.1093/pan/mpr013.
Jacob R. Zhu P. Marie-Andrée. 2012. A Practical Guide to Regression Discontinuity[M]. MDRC.org.
Kabacoff R. 2013. R in Action, Data Analysis and Graphics with R[M]. Manning.
Kahn-Lang A. Lang K. 2020. The Promise and Pitfalls of Differences-in-Differences: Reflections on 16 and Pregnant and Other Applications[J/OL]. Journal of Business & Economic Statistics, 38(3): 613-620[2025-04-11]. https://doi.org/10.1080/07350015.2018.1546591.
Kang M. Ragan B G. Park J H. 2008. Issues in Outcomes Research: An Overview of Randomization Techniques for Clinical Trials[J/OL]. Journal of Athletic Training, 43(2): 215-221. https://doi.org/10.4085/1062-6050-43.2.215.
Kendall J M. 2003. Designing a Research Project: Randomised Controlled Trials and Their Principles[J/OL]. Emergency Medicine Journal, 20(2): 164-168. https://doi.org/10.1136/emj.20.2.164.
Kernan W N. Viscoli C M. Makuch R W. 等. 1999. Stratified Randomization for Clinical Trials[J/OL]. Journal of Clinical Epidemiology, 52(1): 19-26. https://doi.org/10.1016/S0895-4356(98)00138-3.
Lalonde R. 1984. Evaluating the Econometric Evaluations of Training Programs with Experimental Data[J]. The American Economic Review, 76.
Roberts C. Torgerson D. 1998. Understanding Controlled Trials: Randomisation Methods in Controlled Trials[J/OL]. BMJ, 317(7168): 1301-1310. https://doi.org/10.1136/bmj.317.7168.1301.
Ron C. 2008. Cody’s Data Cleaning Techniques Using SAS[M]. Cary, NC: SAS Institute Inc.
Rosenbaum P R. Rubin D B. 1983. The Central Role of the Propensity Score in Observational Studies for Causal Effects[J/OL]. Biometrika, 70(1): 41-55[2025-04-14]. https://doi.org/10.1093/biomet/70.1.41.
Rubin D B. 1980. andomization Analysis of Experimental Data in the Fisher Randomization Test[J/OL]. Journal American Statistical Association, 75(371). https://www.jstor.org/stable/.
Ryan A M. Burgess J F. Dimick J B. 2015. Why We Should Not Be Indifferent to Specification Choices for Difference-in-Differences[J/OL]. Health Services Research, 50(4): 1211-1235[2025-04-12]. https://doi.org/10.1111/1475-6773.12270.
Soumerai S B. Koppel R. 2017. The Reliability of Instrumental Variables in Health Care Effectiveness Research: Less Is More[J/OL]. Health Services Research, 52(1): 9-15[2025-07-04]. https://doi.org/10.1111/1475-6773.12527.
Stuart E A. 2010. Matching Methods for Causal Inference: A Review and a Look Forward[J/OL]. Statistical Science, 25(1)[2025-05-30]. https://doi.org/10.1214/09-STS313.
Stuart E A. Huskamp H A. Duckworth K. 等. 2014. Using Propensity Scores in Difference-in-Differences Models to Estimate the Effects of a Policy Change[J/OL]. Health Services and Outcomes Research Methodology, 14(4): 166-182[2025-04-12]. https://doi.org/10.1007/s10742-014-0123-z.
Sun L. Abraham S. 2021. Estimating Dynamic Treatment Effects in Event Studies with Heterogeneous Treatment Effects[J/OL]. Journal of Econometrics, 225(2): 175-199[2025-04-15]. https://doi.org/10.1016/j.jeconom.2020.09.006.
van Buuren S. Groothuis-Oudshoorn K. 2011. mice: Multivariate Imputation by Chained Equations in R[J/OL]. Journal of Statistical Software, 45(3): 1-67. https://doi.org/10.18637/jss.v045.i03.
Walker V. Sanderson E. Levin M G. 等. 2024. Reading and Conducting Instrumental Variable Studies: Guide, Glossary, and Checklist[J/OL]. BMJ: e078093[2025-07-04]. https://doi.org/10.1136/bmj-2023-078093.
Wickham H. 2014. Tidy Data[J/OL]. Journal of Statistical Software, 59(10): 1-23. https://www.jstatsoft.org/index.php/jss/article/view/v059i10.
Wooldridge J M. 2009. Introductory econometrics: a modern approach[M]. 4. ed. Peking: Cengage Learning.
刘冲. 沙学康. 张妍. 2022. 交错双重差分:处理效应异质性与估计方法选择[J/OL]. 数量经济技术经济研究, 39(09): 177-204. https://doi.org/10.13653/j.cnki.jqte.20220805.001.
刘晓燕. 陈峰. 魏永越. 等. 2008. 响应—自适应随机化分组方法[J]. 临床药理学, 13(6): 684-689.
刘玉秀. 姚晨. 杨友春. 等. 2001. 随机化临床试验及随机化的SAS实现[J/OL]. 中国临床药理学与治疗学, 6(3): 193-195. https://doi.org/10.3969/j.issn.1009-2501.2001.03.001.
吴春霖. 王镭. 李卫兵. 2013. 临床试验随机化分组及其Stata的实现[J/OL]. 中国循证医学杂志, 13(2): 242-244. https://doi.org/10.7507/1672-2531.20130041.
李立明. 2007. 流行病学[M]. 北京: 人民卫生出版社.
胡良平. 关雪. 毛玮. 等. 2011. 各种常见随机化的SAS实现[J]. 中华脑血管病杂志(电子版), 5(01): 68-76.
许文立. 2023. 双重差分法的最新理论进展与经验研究新趋势[J]. 广东社会科学(05): 51-62.
谢谦. 薛仙玲. 付明卫. 2019. 断点回归设计方法应用的研究综述[J]. 经济与管理评论, 35(2): 11.
高涛. 肖楠. 陈钢. 2013. R语言实战[M]. 人民邮电出版社.
黄丽红. 陈峰. 2019. 倾向性评分方法及其应用[J]. 中华预防医学杂志, 53(7): 5.
黄炜. 张子尧. 刘安然. 2022. 从双重差分法到事件研究法[J/OL]. 产业经济评论(02): 17-36. https://doi.org/10.19313/j.cnki.cn10-1223/f.20211227.002.